
UCRL-CONF-235949

Scalable High Performance
Message Passing over InfiniBand
for Open MPI

A. Friedley, T. Hoefler, M. L. Leininger, A.
Lumsdaine

October 30, 2007

Communication in Clusters and Cluster Computer
Interconnected Systems
Aachen, Germany
December 12, 2007 through December 12, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Scalable High Performance Message Passing over InfiniBand for Open MPI

Andrew Friedley123 Torsten Hoefler1 Matthew L. Leininger23

Andrew Lumsdaine1

1Open Systems Laboratory, Indiana University, Bloomington IN 47405, USA
{afriedle,htor,lums}@cs.indiana.edu

2Sandia National Laboratories, Livermore CA 94551, USA

3Lawrence Livermore National Laboratory, Livermore CA 94551, USA
{friedley1,leininger4}@llnl.gov

Abstract

InfiniBand (IB) is a popular network technology for
modern high-performance computing systems. MPI im-
plementations traditionally support IB using a reliable,
connection-oriented (RC) transport. However, per-process
resource usage that grows linearly with the number of pro-
cesses, makes this approach prohibitive for large-scale sys-
tems. IB provides an alternative in the form of a connection-
less unreliable datagram transport (UD), which allows for
near-constant resource usage and initialization overhead as
the process count increases. This paper describes a UD-
based implementation for IB in Open MPI as a scalable al-
ternative to existing RC-based schemes. We use the software
reliability capabilities of Open MPI to provide the guaran-
teed delivery semantics required by MPI. Results show that
UD not only requires fewer resources at scale, but also al-
lows for shorter MPI startup times. A connectionless model
also improves performance for applications that tend to
send small messages to many different processes.

1 Introduction

The Message Passing Interface (MPI) has become the de
facto standard for large-scale parallel computing. In large
part, MPI’s popularity is due to the performance-portability
it offers. Applications written using MPI can be run on
any underlying network for which an MPI implementation
is available. Because so many HPC applications rely on
MPI, all network hardware intended for high-performance
computing has at least one (usually more than one) imple-
mentation of MPI available.

InfiniBand (IB) [6] is an increasingly popular high-
performance network solution. Recent trends in the Top
500 list show that more and more systems are equipped with
IB (from 3% in June 2005 to more than 24% in November
2007). The size of such systems also shows an increasing
trend. The largest InfiniBand-based system in 2005, Sys-
temX, connected 1,100 dual processor nodes. In 2006, the
Thunderbird system appeared, consisting of 4,500 dual pro-
cessor IB compute nodes.

InfiniBand provides several network transports with
varying characteristics. A reliable, connection-oriented
(RC) transport similar to TCP is most commonly used (es-
pecially by MPI implementations). A less-widely adopted
alternative is the connectionless unreliable datagram (UD)
transport, which is analagously similar to UDP. While UD
does not guarantee message delivery, its connectionless
model reduces the resources needed for communication and
provides gains in performance when communicating with
many different processes.

These characteristics of UD make it an interesting op-
tion as a transport protocol for IB support in an MPI imple-
mentation. The traditional RC (connection-based) approach
with IB can lead to unacceptably high memory utilization
and long startup times. Although the UD (connectionless)
approach does not have the resource consumption problems
of the RC approach, the burden of guaranteeing reliable
message delivery is shifted from the transport protocol to
the MPI implementation. This is not necessarily a disad-
vantage however. Providing reliability within an MPI im-
pelmentation allows flexibility in designing a protocol that
can be optimized for MPI communication.

1.1 Related Work

Several strategies have been employed to reduce the re-
source requirements of RC in an attempt to preserve the vi-
ability of an RC-based MPI implementation at large scale
process counts. A shared receive queue (SRQ) feature al-
lows for buffers to be posted to a single receive queue,
instead of spreading resources across many different re-
ceive queues [12, 16]. MPI processes rarely receive large
amounts of data over all connections simultaneously, so
sharing allows the overall number of receive buffers to be
reduced.

Another method of improving efficiency at scale is to use
a lazy connection establishment mechanism. Connections
are not established until they are required for communica-
tion, resulting in lower resource utilization in applications
that require fewer than O(N 2) connections. However, ap-
plications exhibiting a fully-connected communication pat-
tern do not benefit, as all connections must be established at
some point.

The use of the UD transport to solve the remaining is-
sues with “fully-wired” applications was first developed in
LA-MPI [5] by Mitch Sukalski, but to our knowledge this
work was never published. Another approach was recently
proposed in [7, 8]. Although the implementation described
by Koop et. al. has recently been released, we did not have
time to perform a comparison against our work before pub-
lication.

While our implementation appears to be similar in many
ways, it differs in its clear design within Open MPI’s MCA
architecture as well as in its implementation of a reliability
protocol. Open MPI already provides a network-agnostic
reliability protocol via the Data Reliability (DR) Point-to-
Point Messaging Layer (PML) component, and is used to
provide reliable communication over the UD transport. Fur-
thermore, we describe an optimization and show that it in-
creases bandwidth significantly for UD.

2 MPI Over InfiniBand

The InfiniBand (IB) Architecture [6] is a high-
performance networking standard. Several network trans-
ports are defined. The most commonly used are the reli-
able connection-oriented (RC) and the unreliable datagram
(UD) transport. RC is analogous to TCP, as is UD to UDP.
Both transports provide traditional send/receive semantics,
but extend this functionality with different feature sets.

2.1 Reliable Connection Transport

The Reliable Connection (RC) transport allows for arbi-
trarily sized messages to be sent. IB hardware automatically
fragments the data into MTU-sized packets before sending,

then reassembles the data at the receiver. Additionally, Re-
mote DMA (RDMA) is supported over the RC transport.
RDMA allows one process to directly read/write memory
from/to the memory of another process, without requiring
any communication processing by the remote process.

A connection-oriented communication model means that
a connection must be explicitly established between each
pair of peers that wish to communicate. Each connection
requires a send and receive queue (together referred to as a
queue pair, or QP). A third type of queue, shared by many
queue pairs, is used by the hardware to signal completion of
send and receive requests.

Requiring a separate receive queue for each connection
means that separate receive buffers must be posted to each
of these queues for the host channel adapter (HCA) to copy
data into. Distributing receive buffers across many connec-
tions is wasteful, as the application is not likely to be re-
ceiving data from every other connected process simulta-
neously. Memory utilization increases with the number of
connections, reducing memory available for use by applica-
tions. To work around this issue, IB supports the concept
of a shared receive queue (SRQ). Each new queue pair (QP)
may be associated with an SRQ as it is created. Any data ar-
riving on these QPs consumes receive buffers posted to the
shared receive queue. Since receive buffers are shared, ap-
plications receiving from only a subset of peers at any one
time require fewer total buffers to be allocated and posted.

2.2 Unreliable Datagram Transport

As its name implies, the Unreliable Datagram transport
does not guarantee message delivery. Thus, a UD-based
MPI implementation must implement its own reliability
protocol. In principle, a hardware-based reliability mech-
anism should have superior performance over a software-
based mechanism. In practice, the flexibility of a software-
based reliability protocol has lead to performance gains
[13]. Also, the reliability offered by the RC transport ends
at the InfiniBand HCA. No reliability is guaranteed when
the data moves from the HCA across a PCI bus and into
system memory.

Hardware message fragmentation is not provided with
the UD transport, so software must also deal with fragment-
ing large messages into MTU-sized packets before being
sent. Current IB hardware allows for a maximum two kilo-
byte data payload. Since protocol headers must be sent with
each message, a small maximum message size presents a
challenge for achieving optimal bandwidth. This issue will
be discussed in section 4.2.

UD features a connectionless communication model.
Only address information for a single QP at each process
must be exchanged; peers may communicate without any
sort of connection establishment handshake. This leads to

both efficient and scalable resource utilization. First, only
one QP is required for communication with any number
of other processes. Active connections require resources
in both the application and the HCA, so a connectionless
model is desireable when minimizing resource usage at
scale. Second, this single QP’s receive queue behaves the
same as an RC shared receive queue. Our results show
that a simple, fully connected MPI job with 1024 processes
would require 8.8 MiB of memory per process using our
UD implementation compared to 14.75 or 25.0 MiB using
the existing RC implementation with or without SRQ, re-
spectively.

3 Open MPI

Open MPI [3] is a collaborative effort to produce an open
source, production quality MPI-2 [9] implementation. First
introduced in LAM/MPI [15], Open MPI’s Modular Com-
ponent Architecture (MCA) allows for developers to imple-
ment new ideas and features within self-contained compo-
nents. Components are selected and loaded at runtime.

MCA components are organized into a set of frameworks
responsible for managing one or more components that per-
form the same task. Each framework defines an interface
for each component to implement as well as an interface
for other parts of the implementation to access the com-
ponents’ functionality. Although many frameworks exist
within Open MPI, only those most relevant to the work pre-
sented are discussed in detail here.

3.1 Point to Point Messaging Layer

One of the most important frameworks in Open MPI’s
communication path is the Point-to-point Messaging Layer
(PML). PML components implement MPI send and re-
ceive semantics in a network-independent fashion. Message
matching, fragmentation and re-assembly are managed by
the PML, as well as selection and use of different protocols
depending on message size and network capabilities. Other
frameworks, like the Memory Pool (MPool) and Registra-
tion Cache (RCache) are enabled for networks that require
memory registration (such as InfiniBand). Figure 1 illus-
trates how all of these frameworks fit together to form Open
MPI’s point to point architecture. [11, 12] discusses the re-
lated frameworks in greater detail.

An interesting PML component in the context of this pa-
per is the data reliability (DR) component [10]. DR uses an
explicit acknowledgement protocol along with data check-
summing to provide network failover capabilities. This al-
lows DR to detect when network links are no longer func-
tional, and will automatically switch over to a different net-
work when failure occurs. Furthermore, DR provides ver-
ifies checksums once data reaches main memory. This al-

OB1 or DR PML

UD or OpenIB (RC) BTL

MPI Layer

MPool

RCache

Figure 1. Point-to-point Architecture

lows for detection of data corrupted by the system busses,
which IB’s hardware-based reliability does not provide.
Such reliability comes at a price however; performance is
slightly lower than that of the default PML component, re-
ferred to as OB1.

What makes the DR component interesting is its use in
conjunction with InfiniBand’s UD transport. As discussed
in section 2.2, a software reliability protocol is needed to
meet MPI’s guaranteed message delivery semantics. Rather
than implementing a reliability protocol specifically for UD,
the DR component may be used to achieve guaranteed mes-
sage delivery.

3.2 Byte Transfer Layer

Both the DR and OB1 PML components rely on another
framework, the Byte Transport Layer (BTL), to implement
support for communicating over specific networks. The
BTL framework is designed to provide a consistent inter-
face to different networks for simply moving data from one
peer to another. This simplicity allows for fast development
of new components for emerging network technologies, or
to explore research ideas.

The BTL interface is designed to provide a simple ab-
straction for communication over a variety of network
types, while still allowing for optimal performance. Tra-
ditional send semantics must be supported by each BTL,
while RDMA put/get semantics may be supported by net-
works that provide it. Receives of any form (traditional or
RDMA) are initiated only by registering a callback func-
tion and a tag value with the BTL. The BTL then calls this
function whenever a message arrives with a corresponding
tag value, providing the upper layers access to the received
message. Some networks (including IB) require that mem-
ory be registered for direct access by the HCA, so a memory
allocation interface is provided by the BTL as well.

Each BTL component implements support for a particu-
lar network and transport. InfiniBand is primarily supported
via the OpenIB component, which uses the RC transport

type exclusively. For clarity, this is referred to as the RC
BTL. RDMA is supported for both small and large mes-
sages. While using RDMA for small messages (referred to
in Open MPI as eager RDMA) may reduce latency, such an
approach is not scalable due to the requirement that RDMA
buffers be polled to check for completion [12].

Connection management is a major issue for large scale
MPI jobs. With a connection-oriented transport like RC, a
connection and associated resources must be allocated for
each pair of peers that wish to communicate. In the worst
case this results in O(N2) connections for an all-to-all com-
munication pattern.

One way to avoid this problem is to establish connections
only when communication between two peers is requested.
Each time a process sends a message, it checks the state of
the connection to the destination process. If no connection
is established, a new connection is initiated. Rather than
waiting for the connection to be established, the message
to be sent is queued and the application or MPI library con-
tinue execution. If the process tries to send another message
to the same destination before the connection is established,
that message is queued as well. Finally, when the connec-
tion is available, any queued messages are sent. Subsequent
messages are sent immediately, but a small cost is still in-
curred to check the state of the connection. Since applica-
tions rarely exhibit an all-to-all communication pattern [17],
the reduction in resources required for established connec-
tions outweighs the small cost of managing connection state
dynamically.

4 Implementation

To support communication over unreliable datagrams, a
new BTL component was developed. Currently named the
UD BTL, its design is far simpler than that of the existing
RC-based BTL. RDMA is not available over UD, so sup-
port for RDMA protocols is not needed. More importantly,
UD is a connectionless network transport; no connection
management is necessary. A single queue pair is used for
receiving all data from all peers. During MPI initialization,
QP address information is exchanged with every other peer
using an all-to-all algorithm over an existing TCP commu-
nication channel established by the runtime environment.
Unlike lazy connection establishment, no logic is needed in
the send path for managing connections – UD connections
are always available.

Bandwidth over the UD transport may be increased by
exploiting the ability of IB hardware to process multiple
send requests in parallel. This is done by initializing a
small constant number of QPs and posting sends among
them in a round-robin fashion. Four QPs were chosen
to give near-optimal bandwidth without affecting latency.
Figure 2 shows peak bandwidth reported by NetPIPE [14]

when striping over a varying number of queue pairs. Un-
like the send side, distributing receive buffers across several
QPs did not yield any performance gains. In our implemen-
tation, only one QP is used for receiving messages, while
four are used for sending.

 4000

 4500

 5000

 5500

 6000

 6500

Pe
ak

 B
an

dw
id

th
 (M

b/
s)

1 QP 2 QPs 4 QPs 8 QPs 16 QPs

Figure 2. QP Striping Bandwidth

4.1 Buffer Management

Ensuring that enough receive buffers remain posted is
a critical aspect of maximizing performance over the UD
transport. When data arrives for a QP that has no receive
buffers posted, the HCA silently drops the data. This prob-
lem is exacerbated by the fact that applications must call
into the MPI library in order for consumed receive buffers
to be process and re-posted to the QP, and may not do so
for long periods of time. Therefore, the UD BTL should
always have as many receive buffers posted as the number
of messages that might be received between MPI calls.

Flow control is difficult for two reasons. First, receive
buffers are shared, so any combination of remote sender ac-
tivity may exhaust the receive queue. Many senders each
sending small messages may overwhelm a receiver just as
easily as one or a few senders sending large messages. Flow
control is difficult, as all potential senders must be notified
of congestion at the receiver in order to be effective. Doing
this means sending a message to each sender, which is not
feasible at scale.

Second, accurately detecting a shortage of receive
buffers with enough time to react is difficult or even im-
possible, especially with data arriving while applications
are not making frequent calls into the MPI library. Due to
the simplicity of the BTL abstraction, it is not possible to
take advantage of a PML-level rendezvous protocol to pre-
post receive buffers when large messages are expected. Nor

does the IB verbs interface provide any information about
how many receive buffers are currently posted; the UD BTL
must keep its own counter of currently posted buffers based
on completion events. Furthermore, time required to either
process currently filled buffers or allocate and register new
buffers is often greater than the time remaining before cur-
rently posted resources are exhausted.

Our solution attempts to strike a balance between min-
imizing resource usage and keeping a large number of
buffers posted to the receive queue at all times. Rather than
trying to dynamically adapt to the communication load, a
static pool of buffers is allocated and left unchanged after
initialization. For tuning to particular applications, an MCA
parameter may be used to specify the number of buffers in
the pool at runtime. The receive path has been optimized to
process and re-post buffers as quickly as possible.

When allocating buffers for an SRQ, the RC BTL uses a
similar strategy, except that it adjusts the number of buffers
based on the number of processes in the MPI job. How-
ever, large process counts do not necessarily correlate to in-
creased communication load per receiver, possibly leading
to an unnecessarily large buffer pool at scale. Accurate siz-
ing of the buffer pool depends heavily on an application’s
behavior; particularly its communication patterns and fre-
quency of calls into the MPI library.

4.2 Message Format and Protocol

Both the PML and BTL are free to define their own pro-
tocol and message headers as they require. The PML builds
messages of a suitable size (bounded by the maximum mes-
sage size the BTL can send) and prefixes its own header
data. A BTL component treats this as an opaque data pay-
load, and prefixes its own header data as needed. When
messages arrive at the receiver, the BTL uses its header data
however it chooses, and passes the opaque data payload (in-
cluding the PML headers) to the PML for processing.

Lack of flow control has the advantage of allowing for a
simpler communication protocol. The UD BTL adds only a
single byte message tag value (rounded to 4 bytes for align-
ment purposes), used for determining which registered call-
back function should be used to pass the data to the upper
layer. However this low per-message overhead is offset by
the UD transport’s 2 Kib MTU. Packet headers for both the
PML and BTL must be included in each 2 Kib message. In
contrast, the RC BTL includes additional flow control infor-
mation in its packet headers, but is able to send much more
data with each message.

To ensure reliability, the DR PML defines the concept of
a virtual fragment, or VFRAG [10], which acts as a unit of
acknowledgement. Two timeout mechanisms are associated
with each VFRAG. The first is used to detect when local
send completion fails to occur. The second is the familiar

ACK timeout, which allows the sender to detect loss by lack
of positive acknowledgement from the receiver within some
time frame. Retransmission occurs either when a timeout
expires, or the receiver responds with an acknowledgement
indicating some portion of the VFRAG was not received.
After several retransmission attempts over one BTL, the
PML marks that BTL as failed, and begins using a different
BTL. While such an approach is intended to transparently
respond to network failure, it also guarantees delivery over
an unreliable network. When used in conjunction with the
DR PML, our UD implementation provides MPI’s guaran-
teed delivery semantics.

5 Results

5.1 Experimental Environment

Atlas, a production system housed at Lawrence Liver-
more National Laboratory (LLNL), was used for all exper-
imental results. Atlas is a 1,152 node cluster connected via
an InfiniBand network. Each node consists of four dual core
2.4 GHz Opteron processors (eight cores per node) with
16 Gib RAM and Mellanox PCI-Express DDR InfiniBand
HCAs, running Linux.

A development version of Open MPI was used, based on
subversion revision 16080 of the main development trunk.
Source code is available to the public on the Open MPI
website [http://www.open-mpi.org]. Stable UD support is
planned for Open MPI version 1.3.

Results for UD are provided using both the OB1 and DR
PMLs. The rationale behind including results for UD with
OB1 is that the reliability overhead introduced by DR may
be directly observed. Although use of OB1 with UD does
not guarantee message delivery, no messages were actually
dropped while running our tests.

5.2 Microbenchmarks

Microbenchmarks are used to determine the behavior of
a system under certain, usually isolated conditions. We
use those benchmarks to determine basic system parame-
ters such as latency, bandwith, and memory utilization.

5.2.1 Point-to-point Performance

NetPIPE [14], a common ping-pong benchmark, was used
to establish a baseline comparison of the latency and band-
width capabilities of the RC and UD BTLs. Latency as
a function of message size is presented in Figure 3, while
bandwidth is presented in Figure 4. For the RC BTL, eager
RDMA was disabled to approximate latencies at scale.

For messages smaller than 2 Kib, UD with OB1 is nearly
equivalent to RC, with or without SRQ. UD performance

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(u
s)

Datasize (bytes)

OpenIB OB1
OpenIB SRQ OB1

UD DR
UD OB1

Figure 3. NetPIPE Ping Pong Latency

with DR is worse due to the DR PML reliability protocol. A
study of the performance overhead inherent in the DR PML
may be found in [10]. At 2Kib, UD’s MTU forces the PML
to switch to the slower rendezvous protocol, causing a drop
in performance that is overcome as message size increases.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

Be
nd

wi
dt

h
(M

ib
/s

)

Datasize (bytes)

OpenIB OB1
OpenIB SRQ OB1

UD DR
UD OB1

Figure 4. NetPIPE Ping Pong Bandwidth

5.2.2 Startup Performance and Memory Overhead

We developed a benchmark to measure the overhead in-
curred by lazy connection establishment. Each process in
the MPI job iteratively sends a 0-byte message to every
other process, while receiving a 0-byte message from an-
other process. This is done in a ring-like fashion to pre-
vent flooding any one process with messages. The total time
taken by each process is averaged to produce a single mea-
surement.

Time taken to execute the benchmark for varying process
counts is shown in Figure 5. A total of 512 nodes were used;
results past 512 nodes were obtained by running more than
one process per node. This does not siginificantly affect the
results, as the benchmark is not bandwidth bound. The UD
BTL yields excellent performance, as no connections need
to established. Since there is no connection overhead, UD’s
time is only that taken for every process to send a 0-byte
message to every other process. RC, shown both with and
without SRQ enabled, incurs significant overhead due to a
connection establishment handshake protocol.

 0.001

 0.01

 0.1

 1

 10

 100

 128 256 384 512 640 768 896 1024
Ti

m
e

(s
ec

on
ds

)

Processes

UD
RC SRQ

RC

Figure 5. Startup Overhead

Figure 6 shows average memory utilization per process
of MPI processes measured at the end of the allconn bench-
mark. Again, results past 512 nodes were obtained by run-
ning multiple MPI processes per node. UD’s memory uti-
lization grows very slowly, at a near-constant rate. Each
MPI process stores a small amount of address information
for every other MPI process, leading to slowly increasing
utilization as scale increases. RC with SRQ does signifi-
cantly better than without, resulting in lower utilization at
low process counts but increasing at a faster rate than UD.
This is due to the RC BTL adjusting the size of the receive
buffer pool based on the number of processes, while the
UD BTL receiver buffer count remains constant (cf. Sec-
tion 4). Memory utilization for RC without SRQ is signif-
icantly higher since receive buffers are allocated for each
connection.

5.3 Application Benchmarks

Application benchmarks help to analyze the behavior
of our implementation for real-world applications. We in-
cluded positive and negative results to illustrate the trading
of memory and wireup costs for communication costs.

 1000

 10000

 100000

 1e+06

 128 256 384 512 640 768 896 1024

Si
ze

 (K
iB

)

Processes

UD
RC SRQ

RC

Figure 6. Memory Overhead

5.3.1 ABINIT

ABINIT is an open source code for ab initio electronic
structure calculations based on the density functional the-
ory. The code is the object of an ongoing open software
project of the Université Catholique de Louvain, Corning
Incorporated, and other contributors [4]. We use a sam-
ple calculation representing a real-word problem described
in [1].

Overall execution times are presented in Figure 7. Only
one run in each configuration was possible due to limited
system availability. Even so, it is fairly clear that for a
real application such as ABINIT, performance is similar for
both UD and RC-based implementations. We were unable
to measure memory usage, but believe the results would be
positive but less pronounced than those of the microbench-
marks.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Ab
in

it
Ru

nn
in

g
Ti

m
e

(s
)

P=128 P=256 P=512 P=1024

UD/OB1
UD/DR
OpenIB

OpenIB/SRQ

Figure 7. Abinit results

5.3.2 SMG2000

SMG2000 [2] is a benchmark written around a parallel
semicoarsening multigrid solver designed for modeling ra-
diation diffusion. An analysis presented in [17] indi-
cates that SMG2000 tends to send many small messages
to many distinct peers. Based on the microbenchmark re-
sults, our expectation is that a UD-based MPI implementa-
tion will perform well in this sort of scenario due to superior
small-message latency and a connectionless communication
model.

Figure 8 shows the execution time of the SMG2000
solver phase for varying number of processes. For this ap-
plication, UD has a clear advantage, but trades in overhead
for the data reliability protocol. The short execution time
of our tests emphasize UD’s better connection setup perfor-
mance, especially as scale increases.

 0

 2

 4

 6

 8

 10

 12

 14

 16

SM
G

20
00

 S
ol

ve
r P

ha
se

 (s
)

P=216 P=512 P=1000 P=1728 P=2744 P=4096

UD/OB1
UD/DR
OpenIB

OpenIB/SRQ

Figure 8. SMG2000 Solver Time

6 Conclusions and Future Work

There are several conclusions that can be drawn from
the results in this paper. First, an unreliable-datagram based
MPI implementation can be a viable alternative to reliable
connection-based approaches, especially at large scale. The
UD approach provides comparable message passing per-
formance to RC approaches and provides distinct advan-
tages in startup time and memory overhead. Second, our
use of multiple queue pairs for sending messages optimizes
UD communication bandwidth. Finally, our implementa-
tion demonstrates how components in a component-based
software architecture can be reused to solve new problems.
In particular, we were able to provide data reliability in the
UD implemenation by reusing the data reliability compo-
nent (Data Reliability PML), thereby reducing code com-
plexity and maintenance costs.

Microbenchmarks and certain applications (e.g., Net-
PIPE and SMG2000) show that the UD BTL incurs a slight
performance penalty in some cases when compared to Open
MPI’s existing RC implementation. On the other hand,
our UD-based implementation offers reduced memory over-
head and fast startup times, especially for applications com-
municating with many peers. SMG2000 and ABINIT show
that applications can benefit, especially at scale. As larger
IB systems are deployed, the highly scalable, low-overhead
characteristics of a UD-based implementation will be pre-
ferred over RC-based implementations.

Future work will investigate the use of a UD-specific re-
liability schemes to minimize performance penalties asso-
ciated with the current DR-based implementation. Alterna-
tive solutions to the software flow control problem will also
be explored.

Acknowledgements

This work was supported by a grant from the Lilly
Endowment and National Science Foundation grant EIA-
0202048. This research was funded in part by a gift from
the Silicon Valley Community Foundation, on behalf of the
Cisco Collaborative Research Initiative of Cisco Systems.

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94-AL85000.

This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. UCRL-
CONF-235949.

References

[1] F. Bottin and G. Zerah. Formation enthalpies of monovacan-
cies in Aluminium and Gold a large-scale supercell ab initio
calculation. submitted to Physical Review B, 2006.

[2] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening
multigrid on distributed memory machines. SIAM Journal
on Scientific Computing, 21(5):1823–1834, 2000.

[3] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, pages 97–
104, Budapest, Hungary, September 2004.

[4] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs,
G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jol-
let, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty,
and D. Allan. First-principles computation of material prop-
erties : the ABINIT software project. Computational Mate-
rials Science 25, 478-492, 2002.

[5] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G.
Minnich, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalksi. A network-failure-tolerant message-passing sys-
tem for terascale clusters. International Journal of Parallel
Programming, 31(4):285–303, August 2003.

[6] InfiniBand Trade Association. Infiniband Architecture Spec-
ification Volume 1, Release 1.2. InfiniBand Trade Associa-
tion, 2004.

[7] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda. High perfor-
mance MPI design using unreliable datagram for ultra-scale
InfiniBand clusters. In ICS ’07: Proceedings of the 21st
annual international conference on Supercomputing, pages
180–189, New York, NY, USA, 2007. ACM Press.

[8] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda. Zero-copy
protocol for mpi using infiniband unreliable datagram. IEEE
Cluster 2007: International Conference on Cluster Comput-
ing, Austin, TX, USA, September 17-20, 2007.

[9] Message Passing Interface Forum. MPI-2: Extensions to
the Message Passing Interface, July 1997. http://www.mpi-
forum.org.

[10] G. M. Shipman, R. L. Graham, and G. Bosilca. Network
fault tolerance in open MPI. In Proceedings, Sixth Interna-
tional Workshop on Algorithms, Models and Tools for Paral-
lel Computing on Heterogeneous Networks, Rennes, France,
September 2007.

[11] G. M. Shipman, T. S. Woodall, G. Bosilca, R. L. Graham,
and A. B. Maccabe. High performance RDMA protocols
in HPC. In Proceedings, 13th European PVM/MPI Users’
Group Meeting, Lecture Notes in Computer Science, Bonn,
Germany, September 2006. Springer-Verlag.

[12] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Mac-
cabe, and P. G. Bridges. Infiniband scalability in open mpi.
In Proceedings of IEEE Parallel and Distributed Processing
Symposium, April 2006.

[13] R. Sivaram, R. K. Govindaraju, P. H. Hochschild, R. Black-
more, and P. Chaudhary. Breaking the connection: Rdma
deconstructed. In Hot Interconnects, pages 36–42. IEEE
Computer Society, 2005.

[14] Q. Snell, A. Mikler, and J. Gustafson. NetPIPE: A Network
Protocol Independent Performace Evaluator. In IASTED In-
ternational Conference on Intelligent Information Manage-
ment and Systems, June 1996.

[15] J. M. Squyres and A. Lumsdaine. A Component Archi-
tecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, number 2840 in Lecture
Notes in Computer Science, pages 379–387, Venice, Italy,
September / October 2003. Springer-Verlag.

[16] S. Sur, M. J. Koop, and D. K. Panda. High-performance and
scalable MPI over InfiniBand with reduced memory usage:
an in-depth performance analysis. In SC ’06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, page
105, New York, NY, USA, 2006. ACM Press.

[17] J. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures. In 16th Intl. Parallel & Distributed Processing
Symp., May 2002.

